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A method of measuring the thermal diffusivity of semi-infinite solid material at room 

temperature using photothermal displacement is proposed. In previous works, within the 

constant thickness of material, the thermal diffusivity was determined by the magnitude and 

phase of deformation gradient as the relative position between the pump and probe beams. In 

this study, however, a complete theoretical treatment of the photothermal displacement tech- 

nique has been performed for thermal diffusivity measurement in semi-infinite solid materials. 

The influence of parameters, such as, radius and modulation frequency of the pump beam and 

the thermal diffusivity, was studied. We propose a simple analysis method based on the zero 

-crossing position of real part of  deformation gradient and the minimum position of phase as 

the relative position between two beams. It is independent of parameters such as power of pump 

beam, absorption coefficient, reflectivity, Poisson's ratio, and thermal expansion coefficient. 

Key W a r d s :  Photothermal Displacement, Deformation Gradient, Phase, Thermal Diffusivity, 

Thermal Diffusion Length, Zero-Crossing Position, Minimum Position 

N o m e n c l a t u r e  
a : Radius of pump beam (,um) 

: Thermal diffusivity (cm2/sec) 

f : Modulation frequency (Hz) 

ath : Thermal expansion coefficient ( l / K )  

]0, I t :  0th, 1st Bessel function 

k : Thermal conductivity ( W / m . K )  

0 Phase angle (degree) 

A Absorption coefficient ( l /m)  

Lth Thermal diffusion length (ram) 

v Poisson's ratio 

P Absorbed energy into specimen (W) 
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Q : Heat source (W) 

a) : Angular f requency(=2/rf)  (Hz) 

r : Relative position (mm) 

T : Temperature (K) 

u : Displacement vector (m) 

1. Introduct ion 

The photothermal technique is a very useful 

tool for the research of new materials or the 

surface of materials, the measurement of thermo- 

physical properties for sol id/ l iquid etc. As the 

measurement method of thermo-physical  proper- 

ties using the photothermal effect, a photothermal 

radiometry, photothermal refraction, photother- 

real deflection, and photothermal displacement 
are represented and much researches is actively 

being pursued. 

The photothermal displacement method used in 

this study is a useful method to measure the 
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magnitude and phase of the thermoelastic defor- 

mation gradient, which is produced by the 

absorbed light energy with a period on the surface 

of the material. In order to determine the thermal 

diffusivity of solid material, many experimental 

and theoretical studies have been conducted. 

Olmstead et al. (1983) introduced a basic theory 

that had the pump beam modulated as a sine 

wave and the magnitude and phase of deforma- 

tion gradient on the surface of material were 

calculated. They presented the possibility of ther- 

mal property measurement using photothermal 

displacement spectroscopy, based on comparison 

with experimental results. Li et al.(1991) 

calculated the magnitude of deformation at a 

point as they presented the analytical model with 

pump beam that was modulated into a square 

wave, and here, the characteristic frequency was 

defined as the modulation frequency when mag- 

nitude of deformation drops rapidly. They were 

unable to calculate the quantitative thermal 

property although they presented a simple equa- 

tion used to obtain the thermal diffusivity with 

relation to the thermal diffusivity, the 

characteristic frequency, the thickness of material 

and the radius of pump beam. Applying the 

deformation gradient equation which was 

presented by Olmstead, Ogawa et al. (1999) deter- 

mined the thermal diffusivity from relation be- 

tween the phase of deformation gradient and the 

change of modulation frequency at a point. 

However, these methods have a relative large 

error and need much time to analyze the 

experimental results. Lee et a1.(2000) proposed 

the equation used to determine the thermal 

diffusivity involving the relative distance that has 

a minimum value of phase curve with respect to 

the relative distance between pump beam and 

probe beam. As these studies were about the 

material with uniform thickness, these methods 

could not be applied to a thick material like a 

semi-infinite solid ; generally the thermal proper- 

ty of material that has thickness over 3 mm cannot 
be obtained theoretically. Therefore, in this study, 

in order to solve these problems, we present the 

analytical model for semi-infinite solid material, 

and the simple method applied to measure the 

thermal diffusivity was proposed using relations 

between the thermal diffusion length and relative 

distance when the real part of the deformation 

angle equals zero, the thermal diffusion length 

and relative position when the phase has a mini- 

mum value. Theoretical study was then performed 

and a simple analysis method was proposed from 

the numerical integration. 

2. Principle and Theory 

2.1 Principle 
Figure 1 schematically shows the principle of 

the photothermal displacement method. The 

photothermal displacement method is based on 

detection of the displacement of the sample sur- 

face produced by the absorption of energy from a 

modulated light beam incident on the sample. The 

heating of the sample by the pump beam produces 

a temperature distribution and thermoelastic de- 

formation of the sample, which can be detected by 

deflection of the probe beam reflected from the 

sample surface. And the information on the 

thermophysical properties of the sample can be 

obtained from measurements of deflection. 

Because thermoelastic deformation is changed by 

the thermal and optical properties, such as ther- 

mal diffusivity, absorption coefficient, etc., after 

ignoring the refraction by the air on the surface, 

the difference between the incidence and reflec- 

tion angle is proportional to the deformation 

gradient on the sample surface. 

Heating ~ Deflected 
proX~ beam/~undeflected 

Fig. 1 The principle of the photothermal displacem- 
ent method and theoretical model 
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Generally, there are two ways to determine 

thermal diffusivity through the photothermal dis- 

placement• The one is to use the deformation 

angle on the surface of the specimen and the other 

is by the use of the phase angle, which is produced 

by the phase lag as the position is far from the 

center of deformation or pump beam. Using the 

deformation gradient and phase method, the ther- 

mal diffusivity is determined by the comparison 

of the experimental and theoretical results. 

2.2 Temperature Analysis 

To obtain an expression for the photothermal 

deformation, we consider the homogeneous and 

isotropic semi-infinite solid with stress-free 

boundaries, no thermal conduction to the sur- 

rounding gas, and irradiated by a sinusoidally 

modulated laser beam, incident on the sample 

normal to the sample surface. 

In order to find temperature distribution and 

deformation gradient of specimen, as in Fig. 1, a 

two-dimensional solid model that has a finite 

length in the direction of z and an infinite length 

in the direction of r is chosen. In temperature 

analysis, the conduction is considered as signifi- 

cant whereas convection and radiation are treated 

as negligible. With respect to each domain, the 

governing equation is the 2-D heat conduction 

equation having heat source in cylindrical coor- 

dinate : 

1 OT~ 1 
VZTi a, at k Q~ ( i = f , s )  (1) 

where Tis  temperature, k is thermal conductivity, 

a is thermal diffusivity and Q is heat source 

produced by pump beam. Temperature and heat 

source are function of direction of radius ( r ) ,  

perpendicular direction (z) and time (t) .  The 

subscript f indicates the front gas of specimen and 

the subscript s represents the domain of specimen. 

Heat flux and temperature are constant at z = 0  

and it is assumed that temperature is nearly zero 

because the thermal effect by pump beam can not 

have an influence on the specimen where z 

approaches an infinite. Also, as the temperature 

rise of the specimen by the pump beam is very 

small, the heat transfer by the convection or 

radiation is not considered. (Jeon et al., 2002; 

Carslaw and Jaeger, 1959) Therefore, the boundary 

conditions are 

ksSTin , 8Tsl 

Tel,=0 = T,l,=0. lim T,~= lim T ,=0 .  
g ~ o o  z ~ - ~  

The heat source is the pump beam which has a 

Gaussian intensity distribution and is controlled 

by the modulation frequency (f) .  The radius of 

the pump beam is considered to be the 1/e value 

of maximum intensity and the absorption 

coefficient (k) is defined using the exponential 

law of light absorption. At the front gas region, 

light energy is not absorbed. Therefore the heat 

source is given by 

O,-=o, O~=~e-r"a'+a**[l+cos(o~t)] .  (3) 

Where the P represents an absorbed energy into 

specimen and is decided by the output power of 

pump beam and the reflectivity of specimen. The 

heat source Q(r,  z, t) is made of the independent 

term of time and the term that always oscillates 

with a constant frequency. The independent term 

of time is not considered since it does not have an 

effect on the phase of deformation and only the 

dependent term of time is considered. The 

analysis of the heat conduction equation is sim- 

plified by the transformation of a periodic func- 

tion with time into steady state function. And in 

order to easily get the phase difference of defor- 

mation gradient, applying a complex method, the 

heat conduction equation, Eq. (3) is transformed 

into Eq. (4). 

(4) 
i(.o ~ P/~x e_r21a2+asZ 

V 2 T , - ~  Ts= 47raZk ~ 

where Ti(r,  z, t) = Ti(r ,  z)exp(io0t). 

Applying Hankel transforms to the differential 

equation that is transformed into steady state 

function, the equations are 

0% e~ t,,=0 ' 
°z~ (5) 
0at* ~ ] t , -  P2~ e_P,r2taa+a a 
3Z 2 8x& 
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ti(IL z) = fo~ i ' i (r ,  z) rJo(13r) dr, b / , =  where 

,/1~ 2 + ico /  a , , / ,  . 

The boundary conditions which are trans- 
formed by the complex method and the Hankel 
transforms are 

& Stz[  _ ~  Otsl 
~z-lz=0-'~S~z-lz=0' (6) 

tfl .=o= tsl.=o, lira t s= lirn t~=o. 

The Eq. (5) is the lst-order differential equa- 
tion and the solution is written as Eq. (7). In 
addition, the coefficients A,  B, C and D are 
obtained from the transformed boundary 
conditions, Eq. (6). The tsp is particular solution 
of t, and is inserted into the Eq. (5) and then, the 
unknown F is obtained. 

ts=Ae-~,~ + Be~, z, 
(7) 

t ,= Ce-~e + De~e + t,p, tsp=Fe ~ 

where 

Pits g -~2a2/4 k s & -  k s &  
F =  8erk, 82 + 2~ ' A -  ,~j~,jt,_.~_+ k,& F, 

(8) 
B = C = o ,  D k j & + k , & - -  

Inserting the coefficients A,  D, C, D and F 
into Eq. (7) and using Inverse Hankel transforms 
and complex method, the equations of the final 
temperature distribution are obtained. The 
equations can be expressed as 

Ti(r , z )=fo~t i ( f l ,  z)flfo(l~r)d~ (9) 

T1(r, z, t)=~fo~BdBJo(13r) 

( ks~s- lesas ~1 ~ -~sz ~ot ~ . ] ~ ] e  e (10) 

T,(r, z, t) = ~P~, (~fldfllo(~r) 
5 7fRs .'o 

ca,_ k~ts + ks& e~ \ / e-B'a2/4 \ ~t 
ke&+k,&e ) ~ ) e  . 

2.3 Thermoelast ic  analys is  
The result of temperature analysis is applied to 

the thermo elastic model using the result of tem- 
perature analysis. The equation used here is the 
thermoelastic equation (Navier Equation) as Eq. 

(11). Assuming that external force does not act 
on the periphery of the specimen(Nowachi, 
1986), the boundary conditions are expressed as 

Va~_~ V(V-ff) _ 2 ( 1 + v )  athVT (11) 
1 - - 2 v  1 --2v 

arzlz=o=O, a~lz=o=O, ji_m a=O.  (12) 

The deformation of specimen (u) which is 
caused by the change of temperature is expressed 
as the sum of the particular solution (up) and 
homogeneous solution (Uh) as Eq. (13). In 
addition, the particular solution can be expressed 
as the thermoelastic potential function(qS). 
Inserting this equation into Eq. (11), the 
solutions are divided into the particular and 
homogeneous solution as the Eqs. (14) and (15). 
The homogeneous solution is transformed into 
the form of the bi-harmonic equation as the Eq. 
(17) using Love function expressed as the Eq. 
(16). Therefore, the expression with the deforma- 
tion of specimen is given by Eq. (18), and the 
perpendicular deformation which should be 
considered in this work is written as Eq. (19). 
Also, the boundary conditions are expressed as 
Eq. (20) applying the thermoelastic potential 
function and Love function. 

ff=Hp q-~h=Vqbq-ffh (13) 

2 l + v  
g ¢ = ~ v ~ t h T  (14) 

(1 --2/)) VZ~h--V (V" Hh) = 0  (15) 

a h =  2 (1 -- v) V z ~ - V  (V" (b) (16) 
1 - 2 v  

V4~b = 0  (17) 

a=V~b-{ 2 (1-- v) VZ~b-gr (V" ~b) (18) 
1 --2v 

a•_} (1 -- v) ~ b - -  Oz~b//o~eZ (19) 
Uz=OZ 1 --2V 

(1-2v - v  - =0 
(20) 

02~ 8 , a=~ 

The ~b and ~b are a function of r and z and in 
order to analyze easily, these equations are 
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applied to the Hankel transforms. And then, these 
are transformed into the only functions of z. The 
transformed equations are 

l~ qb= ~-Ot thrs  (21) Oz~ 

~,1~ ~ 02 ~2{~ "JU ~2~ = 0  (22) 

where 

¢(fl, z) =f0**¢ (r,  z) rio(fir) dr, 

¢(fi, z ) = f 0 ® ¢  (r ,  z) rJo(fir)dr. 

In addition, using the Hankel transforms, the 
boundary conditions and deformation(u) are 
expressed as 

- 

(l--2v) ~ - +  ( l --v)  V ~b--~z2 = 

a - (23)  
(1 -2v)  fi2~--fi2(2--v)O~_ ( l--v)  O ~b--0 

_ c~q~ _~ 0z~ 2 ( 1 - -  v )  f120~ (24)  
U z = ~  ~ I--2V 

where 

ft~(fi, z) = fo®u (r, z) rio(fir) dr. 

The solutions of differential equations that are 
expressed in Eqs. (21) and (22) can be written as 
Eqs. (25) and (26) and the unknowns are 
obtained by applying boundary conditions. Here, 
~p which is the particular solution of transformed 
potential function, can be represented as Eq. (27) 
and the unknowns are obtained by inserting into 
Eq. (21). 

¢ ( r, z) =Me-PZ + Ne~Z+ Cp (25) 

¢(r ,  z) = ( A + B z )  e-~"+ (C+Dz)  e p" (26) 

where 

Cp = Ge ~ + He ~.2. (27) 
I + V athP/ts g -a2a214 

1--V 4zcks 8~--,~ 
e ~ ( k ~ + k ~ & )  e ~ 

( ?~_fi2 (3:_fi ,)  ( k ,&+k,&)  )" 

Applying the boundary condition of Eq. (12), 
it is proper that unknowns M, A and B equal 
zero. Inserting the term that is related to 
homogeneous solution of Eq. (26) into boundary 
condition of Eq. (23), unknown C and D can be 
obtained as the function of  ~. Therefore, the Eq. 
(28) is formulated from Eq. (24), and the equa- 
tion of surface which is used in this work is 
written as Eq. (29). Here, the unknown N has no 
connection with the value of Eq. (29). 

- 0 ¢ + 2  DeP* fl2(C+Dz) e ~* 
u ~ = ~  B 1 - 2 v  (28) 

8¢+2 D fi~C 
Ztz z = 0 = ~  - /3 1 --2V 

where 

C= ( l _ 2v) [ l --fl2v O~ 

D =  ( 1 - 2 v )  kfl- Oz - 

Through the Inverse Hankel Transforms, the 
perpendicular deformation at the surface is 
expressed as 

u~l~=o-- (1 + v) athP2, foO~2dB [ l Or~ 
4n'k~ Jo ~ m o ~  J 

{ ~e -a'az/4 { 1 ksA, + kiS/ 
 ,+fi (a ,+f i ) (k , , ,+k ,8 , )  . 

Differentiating the above equation with respect 

to radius(r) ,  the final deformation gradient of 
specimen at the surface can be written as 

4~ks Jo [ ~2s-A2 , \ As+I~ 
(30) 

k~+ki& )l~2]l($r)}dl ~ 
(&+fl) (k~6i+ ks&) 

The deformation gradient of the specimen at 
the surface is largely influenced by the relative 
position, modulation frequency, radius of  pump 

beam and thermal diffusivity. In addition, the 
Poisson ratio, coefficient of thermal expansion 
and power of  pump beam in the first term of Eq. 
(30) play a part in the constants that increase or 
decrease the amplitude of deformation gradient. 
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3. Results  and Analysis  

Figure 2 shows the typical plot of  temperature 

distribution at the surface. There is some differ- 

ence according to the analysis condit ion such as 

thermal diffusivity, thermal conductivity, thermal 

expansion coefficient, reflectivity, and optical 

absorption coefficient, but the maximum differ- 

ence of temperature is about l ~ 3 K  usually. 

Because the temperature increment is much small, 

the measured value in this study could be the 

thermal diffusivity of  room temperature. 

As Fig. 3 is shows, the representative signals 

obtained by photothermal displacement method 

are the magnitude and phase of  deformation gra- 

dient. As the relative position between the pump 

and probe beam increases, the real part of  defor- 

mation gradient increases sharply to the near of  

radius of  pump beam, but after a maximum point, 

it decreases gradually. The phase of  deformation 

shows a decline until a position and increases to 

the convergence of  a temporary value. In Fig. 3, 

only one side from the center of  deformation is 

displayed, but in fact the other side has a 

symmetrical curve. The scaling of the height of  the 

deformation gradient and real part of deformation 

gradient curve were adjusted arbitrarily. 
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Plot of temperature rise as a function of the 
distance r from the beam center. Parameters : 

using the thermal and optical properties of 
pure iron, a=80ban, P=0.12W, f = 5 0 0 H z  
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Relative Position [ram] 

(c) 

Fig. 3 Real part of deformation gradient and phase 

as a function of relative position. (a) Defor- 

mation gradient (b) Real part of deforma- 
tion gradient (c) Phase 

The phase decreases up to a certain point, then 
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starts to increase and approaches an asymptotic 

value. This has the position where the phase has 

a minimum value. The position Pm~ is defined as 

the "minimum position". The real part of defor- 

mation gradient is similar to the deformation 

gradient, but this has the position where the real 

part of deformation gradient is zero. The position 

ro is defined as the "zero-crossing position". The 

minimum position and zero-crossing position are 

a function of the thermal diffusion length and the 

radius of pump beam. Especially, the thermal 

diffusion length exerts the highest effect than oth- 

er ingredients. The methods of determination of 

thermal diffusivity using a zero-crossing position 

and minimum position is very simple because 

there is not any more normalizing work in the 

process of the analytical comparisons between the 

experimental and theoretical value. 

3.1 The inf luence of parameters  

The influence of parameters such as modula- 

tion frequency, thermal diffusivity, and pump 

beam diameter on the minimum position and zero- 

crossing position was analytically studied. 

As the various relative position between the 

pump and probe beam changes, Fig. 4 shows the 

calculated result ; that is the real part of deforma- 

tion gradient about the materials which have 

different thermal diffusivity one another, where 

the radius of pump beam is 80/zm and modulation 

frequency is 500Hz. As the thermal diffusivity of 

materials is high, Both the zero-crossing position 

of real part of deformation gradient and the 

minimum position of phase become more distant 

from the center of pump beam as shown in Fig. 4 

(a) and (b) respectively. These results are caused 

by the fact that the absorbed energy in the mate- 

rial of which thermal diffusivity is high, diffuses 

over a larger area than materials whose thermal 

diffusivity is relatively low. 

The Fig. 5 shows the calculated real part of 

deformation gradient and phase angle to the 

radial direction when the modulation frequency 

of pump beam is 500Hz, lkHz and 2kHz. The 

radius of pump beam is 80/zm with the thermal 

and optical properties of pure copper. As the 

modulation frequency is high, both the zero- 
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(b) 

Real part of deformation gradient and phase 
as a function of relative position for different 
samples. (a) Real part of deformation gradi- 
ent (b) Phase 

crossing position and the minimum position be- 

come closer to the center of pump beam. And the 

minimal value of phase angle becomes smaller, 

because the absorbed energy in the material per 

period reduces as the modulation frequency 

increases. So, the absorbed energy relatively 

diffuses small area. 

To see the influence of the pump beam radius, 

Fig. 6 represents the calculated the real part and 

the phase of deformation gradient when the radi- 

us is 100, 150 and 200pm with the thermal and 

optical properties of pure magnesium in sequence. 

If the radius is increased, the directly heated area 
is increased and the thermally diffused area is 
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Fig. 5 Real part of deformation gradient and phase as a function of relative position for various frequency of 

pump beam. (a) Real part of deformation gradient (b) Phase 
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Fig. 6 Real part of deformation gradient and phase as a function of relative position for various pump beam 

radius. (a) Real part of deformation gradient (b) Phase 

increased as well. Consequently, the zero-cross- 

ing position becomes more distant from the center 

of pump beam and the minimum point of phase 

angle becomes distant as well. But the difference 

between the maximum and minimum phase angle 
is reduced and the gradient of the section where 

the phase angle declines rapidly is barely changed. 

3.2 Determinat ion of t h e r m a l  d i f f u s i v i t y  

In order to determine thermal diffusivity through 

a photothermal displacement, there are a few 
methods that minimize the error between the 

experimental and theoretical phase angle or de- 
formation curve with a variable thermal diffu- 

sivity at the characteristic frequency. But these 

methods have a relatively large error and need 

much time to analyze the experimental results. 

In this study, it is known that the zero-crossing 

position only depends on the thermal diffusivity, 

the pump beam radius and the modulation fre- 

quency. So considering this characteristic rela- 

tion, as shown in Fig. 7, the simple relation 

equation is obtained at the fixed pump beam 

radius. There is a linear relation between the zero- 

crossing position and thermal diffusion length ( =  
(ct/rcf) uz) that is decided by the thermal diffu- 

sivity and the modulation frequency like Eq. 
(31). Therefore, the zero-crossing position is 
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found from this relation and the thermal diffu- 

sivity can be easily obtained from it. 

Zth=flT"oq-C2 (31) 

Like Eq. (32), thermal diffusivity is made of a 

simple equation from the definition of thermal 

diffusion length and Eq. (31) 

ct= zrf I Ct ro + C2] 2 (32) 

where the pump beam radius is 60/zm, C1 and Ca 

are 0.423 and --4.473 × 10 -3 respectively. 

In Fig. 8, the thermal diffusion length (Ltn) is 

plotted versus the minimum (Pm~). When the 

radius of the pump beam is 60/zm, the best fitting 

relation between thermal diffusion length and 
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Minimum phase position versus thermal dif- 
fusion length at pump beam radius a=60/nn. 

minimum position is form of the linear expression 

as follows 

L th =A1 r0 + A s  (33) 

where A1 and A2 are 0.178 and - 2 . 2 5 ×  10 3 

respectively. From the definition of thermal dif- 

fusion length, the thermal diffusivity is deter- 

mined easily and simply. For the known sample 

thickness and the radius of the pump beam, 

therefore, the thermal diffusivity is determined by 

the measurement of the minimum position. 

4. C o n c l u s i o n s  

In this study, to apply the photothermal dis- 

placement method to the infinite solid, theoretical 

analysis is performed. To measure the thermal 

diffusivity easily and precisely, the relation 

among the thermal diffusivity, the radius of pump 

beam and the modulation frequency that affect to 

the phase and the real part of deformation gradi- 

ent, is analyzed. The following conclusion are 

obtained : 

(1) As the thermal diffusivity increases, ro 

becomes more distant from the center of pump 

beam and the minimum point of phase angle 

becomes more distant as well. 

(2) As the modulation frequency increases, r0 

becomes closer to the center of pump beam and 

the relative position where phase is to be 

minimized becomes closer also. The minimum 

value of phase also becomes smaller. 

(3) As the pump beam radius increases, r0 

becomes more distant from the center of pump 

beam and the relative position to be minimum 

phase angle becomes more distant. On the other 

hand, the difference between the maximum and 

minimum phase angle is reduced and the gradient 

of the section where the phase angle declines 

rapidly, is barely changed. 

(4) The relation between the thermal diffusion 

length and the minimum position is linearly 

independent with materials. And the zero-cross- 

ing position (r0) is linear to the thermal diffusion 

length. Applying these methods, it is very simple 

and easy to determine the thermal diffusivity with 

accuracy. The new equation is independent of the 
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output power of pump beam, absorption coeffi- 
cient, reflectivity, Poisson's ratio and thermal 

expansion coefficient. 
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